
AD-A 09e 965 YALE UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE
F/ 9 /2

UNCLA SSIF IED RR-188 M4L

I c ~ ~ 11111.25

11111 1.111112.l0

1.JI25 III B 1. 6

MICROCOPY RESOLUTION' TEST CHART

VER1T

BORIS -- An Experiment in In-Depth

Understanding of Narratives

by
Wendy Lehnert, Michael G. Dyer, Peter N. Johnson,

CJ Yang, and Steve Harley

Research Report # 188

January 1981

Contract N00014-75-C-1111

pjSti H15JTlC-)N ST 1E r.NTA

Ditribution Un.1 initod

YALE UNIVERSITY
-- DEPARTMENT OF COMPUTER SCIENCE

81 4 30 020

Accession For

NTIS GPA&I
DTIC TAB '[
Unannounced _ -

By.

r ,', t 4

BORIS -- An Experiment in In-Depth

Understanding of Narratives

by
Wendy Lehnert, Michael G. Dyer, Peter N. Johnson,

CJ Yang, and Steve Harley

Research Report # 188

January 1981

This work was supported in part by the Advanced Research Projects
Agency under contract N0014-75-C-IIII and in part by the National
Science Foundation under contract IST7918463.

SECURTf-"LASSIFICATI OF THIS PAGE (*hen Dalntered), C ' t 'REPORT ~ ~ ~ ~ ~ ~ ~ -RN DOUETAINPGE... R N~STRUCrIOWS,,r
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER [2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

188.
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

BORIS -- An Experiment in In-Depth Technical Report

Understanding of Narratives. 6 PERFORMING O1G. REPORT NUMBER

. ihlAUhHOR(. (COIRACT OR GRANTNUMBER(

7_ _U J o h o - - IO N U4 E R (#)

Wend/Lehnert,' Michael G/Dyer(Peter N , Q% N 5""

J.yYanga Steve/Harley s- FV IST7 8 4 6 3

9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM EILEMENT. PROJECT TASK

Yale University - Computer Science Department AREA & UNIT NUMBERS

10 Hillhouse Avenue
New Haven, Connlecticut 06520

I I. CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency Januevr.W81
1400 Wilson Boulevard T%-ALhER OF PAGES

Arlington, Virginia 22209 74

14. MONITORING AGENCY NAME & ADDRESS(If differeit from Controlling Office) IS, SECURITY CLASS. (of this report)
office of Naval Research unclassifie

amunclassifiedInformation Systems Progr\
Arlington, Virginia 22217 15jf S . a. OEUEECL ASSfFICATIONiODOWNGRADING

/ ~ S~ _ SCHEDULE
16&. DISTRIBUTION STATEMENT (of'ths epr)

17. DISTRIBUTION STATEMENT (of he abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

I9. KEY WORDS (Continue on reverse side it necessary and identity by block number)

Artificial Intelligence
Natural Language Processing
Knowledge Representation
Story Understanding
Question Answering

20. ABSTRACT (Continue on reverse side If neceAsaty Ond identify by block number)

-BORIS is a story understanding and question answering system which involves
the specification and interaction of many sources of knowledge. Unlike
skimmers, which simply extract the Ogist.of a story in a top-down manner
and ignore everything else, BORIS attempts to understand everything that it

reads to as great a depth as possible. This report focuses on how the BORIS
program handles a complex story involving a divorce.

DD I,,, 1473k EITIONOI NOV ISOSOLETE 4/(7 0 r . /
SECURITY CLASSIFICATION OF THIS PAGE (Wten Dats Entered)

-- OFFICIAL DISTIRUBTION LIST --

Defense Documentation Center 12 copies
Cameron Station
Alexandria, Virginia 22314

Office of Naval Research 2 copies
Information Systems Program
Code 437
Arlington, Virginia 22217

Dr. Judith Daly 3 copies
Advanced Research Projects Agency
Cybernetics Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209

Office of Naval Research 1 copy
Branch Office - Boston
495 Summer Street
Boston, Massachusetts 02210

Office of Naval Research 1 copy
Branch Office - Chicago
536 South Clark Street
Chicago, Illinois 60615

Office of Naval Research 1 copy
Branch Office - Pasadena
1030 East Green Street
Pasadena, California 91106

Mr. Steven Wong I copy
New York Area Office
715 Broadway - 5th Floor

New York, New York 10003

Naval Research Laboratory 6 copies
Technical Information Division
Code 2627
Washington, D.C. 20375

Dr. A.L. Slafkosky 1 copy
Commandant of the Marine Corps
Code RD-i
Washington, D.C. 20380

Office of Naval Research 1 copy
Code 455
Arlington, Virginia 22217

-- 2--

Office of Naval Research 1 copy
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E.H. Gleissner 1 copy
Naval Ship Research and Development
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper 1 copy
NAICOM/MIS Planning Board
Office of the Chief of Naval Operations
Washington, D.C. 20350

Dr. Robert Engelmore 2 copies
Advanced Research Project Agency
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Professor Omar Wing 1 copy
Columbia University in the City of New York
Department of Electrical Engineering and
Computer Science
New York, New York 10027

Office of Naval Research 1 copy
Assistant Chief for Technology

Code 200

Arlington, Virginia 22217

Major J.P. Pennell 1 copy

Headquarters, Marine Corp.
(Attn: Code CCA-40)
Washington, D.C. 20380

Computer Systems Management, Inc. 5 copies
1300 Wilson Boulevard, Suite 102
Arlington, Virginia 22209

Ms. Robin Dillard 1 copy
Naval Ocean Systems Center
C2 Information Processing Branch (Code 8242)

271 Catalina Boulevard

San Diego, California 92152

4

- 3--

Dr. William Woods 1 copy

BBN
50 Moulton Street
Cambridge, MA 02138

Professor Van Dam 1 copy

Dept. of Computer Science
Brown University
Providence, RI 02912

Professor Eugene Charniak 1 copy

Dept. of Computer Science
Brown University
Providence, RI 02912

Professor Robert Wilensky 1 copy

Univ. of California
Elec. Engr. and Computer Science

Berkeley, CA

Professor Allen Newell 1 copy
Dept. of Computer Science
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA

Professor David Waltz 1 copy
Univ. of Ill at Urbana-Champaign
Coordinated Science Lab
Urbana, Ill 61801

Patrick Winston 1 copy

MIT
545 Technology Square
Cambridge, MA 02139

Marvin Minsky 1 copy

MIT
AI Lab
Cambridge, MA 02139

Professor Negroponte 1 copy

MIT
545 Technology Square

Cambridge, MA 02139

-- 4 --

Professor Jerome Feldman 1 copy
Univ. of Rochester
Dept. of Computer Science
Rochester, NY 14627

Professor Nils Nilsson 1 copy

Stanford Research Institute
Menlo Park, CA 94025

Dr. Alan Meyrowitz 1 copy
ONR
Code 437
800 N. Quincy St.
Arlington, VA 22217

Dr. Edward Shortliffe 1 copy

Stanford University
MYCIN Project TC-117
Stanford Univ. Medical Center
Stanford, CA 94305

Dr. Douglas Lenat 1 copy
Stanford University
Computer Science Department

Stanford, CA 94305

Dr. M.C. Harrison 1 copy
Courant Institute Mathematical Science
New York University
New York, NY 10012

Dr. Morgan 1 copy
Univ. of Penn
Dept. of Computer Science & Infor Science

Philadelphia, PA 19104

BORIS -- An Experiment in In-Depth

Understanding of Narratives

by

Wendy Lehnert, Michael G. Dyer, Peter N. Johnson,

CJ Yang, and Steve Harley

Abstract

BORIS is a story understanding and question answering
system which involves the specification and interaction
of many sources of knowledge. Unlike skimmers, which
simply extract the "gist" of a story in a top-down manner
and ignore everything else, BORIS attempts to understand
everything that it reads to as great a depth as possible.
This report focuses on how the BORIS program handles a
complex story involving a divorce.

Special acknowledgements to Mark Burstein and Tom Wolf for their
valuable contributions to the theory, design, and implementation
of the BORIS system. Thanks also to Judy Martel who edited the
manuscript, and to Margot Flowers, who made valuable suggestions
on an earlier draft.

Table of Contents

1. INTRODUCTION 1

1.1 Background 1
1.2 I/O Behavior 2
1.3 Problems, Problems, Problems 5
1.4 Overall Organization and Control 10

2. KNOWLEDGE REPRESENTATION AND EPISODIC MEMORY 13

2.1 MOPs and META-MOPs 13
2.2 Memory Overlays 18
2.3 TAUs 21
2.4 Semantic vs. Episodic Memory 23

3. PARSING 26

3.1 Depth of Parsing 26
3.2 Parser/Memory Interaction 28

3.2.1 Accessing Static Episodic Structures 28
3.2.1.1 MOPs 28
3.2.1.2 TAUs 29
3.2.1.3 Scenarios 31

3.2.2 Accessing Dynamic Memory Requests 33
3.2.3 A Comparison: Memory-Based Versus Agenda-Based 35

4. EVENT ASSIMILATION 37

4.1 Bottom-Up Processing 38
4.1.1 Episodic Memory Creation 38
4.1.2 Goal/Plan Processing 40
4.1.3 Scenario Mapping 41

4.2 Top-Down Processing 43
4.2.1 The BORIS Process Model 44
4.2.2 Concept Explanation 46

4.3 Meta-Story Knowledge Monitor 50
4.3.1 Main Character Identification 50
4.3.2 Local Contexts 51

5. QUESTION ANSWERING 54

5.1 Understanding at Q/A Time Versus EA Time 54
5.1.1 Tokenization 54
5.1.2 Presupposition Checking 54
5.1.3 Question Words. 55

5.2 Using Memory To Understand 55
5.3 Reconstructive Search 57

6. GENERATION OF ENGLISH IN BORIS 58

6.1 The Basics of Generation 58
6.1.1 The Prototype Hierarchy 59
6.1.2 The Process of Generation 60

ii

6.1.3 The Role of a Generator 63

6.2 Generation Research In Progress 64

7. FUTURE RESEARCH AND CONCLUSIONS 66

7.1 Future Work 66
7.2 Conclusions 66

8. APPENDIX 68

8.1 Trace of BORIS on First Paragraph 68
8.2 Trace of Q/A 70
8.3 Trace of Generation 72

I . -

iii

List of Figures

Figure 1-1: OVERALL ORGANIZATION: Dashed lines represent 12
control flow while starred lines represent data
flow.

Figure 2-1: M-BORROW 14
Figure 2-2: MM-FAVOR 15
Figure 2-3: M-DIVORCE 17
Figure 2-4: MM-LEGAL-DISPUTE 18
Figure 2-5: MEMORY OVERLAYS 19
Figure 2-6: EPISODIC MEMORY 24
Figure 4-1: EPISODIC MEMORY NETWORK 45
Figure 4-2: EVENT ASSIMILATOR: The top-down algorithm for 46

event assimilation.
Figure 6-1: Sample Hierarchical Structure and Traversal To 62

Seek Generation Information

1. INTRODUCTION

1.1 Background

Previous language understanding systems at Yale have been

designed to process a great many stories. For example, FRUMP

[2] was able to read about 10% of stories off the UPI news wire,

and IPP [6] has read over one hundred newspaper stories

concerning terrorism. In order to accomplish such robustness,

however, these programs have paid a price in the depth of their

understanding. That is, they "skim" at various levels, seeking

to extract the "gist" of a story. For instance, given an

earthquake "sketchy script", FRUMP could extract from a story the

time, place, magnitude and number of casualties caused by the

quake. Everything else would be ignored. For instance, consider

the hypothetical "human interest" segment below:

Last night Gov. Jerry Brown was awoken by a violent
earthquake. He was thrown from his bed and landed on his
dog, who then bit him. Authorities described the
earthquake as registering ...

Similarly, IPP achieves its robustness by only understanding

those portions of a story that relate directly to its knowledge

of terrorism. IPP knows a lot about terrorism, but little about

other things.

In contrast, BORIS represents an effort to see what is

involved in understanding a few stories in great depth. The

first story used by the BORIS project is described in (3] and

involves a kidnapping which disrupts a farewell party, but then

turns out to be a hoax.

-I Imp e

2

This report describes the results of building a program to

process a more complex story, involving a divorce case.

1.2 1/0 Behavior

What follows is an actual understanding and question

answering session with the BORIS program running on the divorce

story: (Input to the program is in lower case; output in

uppercase.)

TOPS-20 Command Processor 4(560)-i
@BORIS-DEMO.EXE. 5

Top-Level of LISP
*(EXPFS 50000)
* (BORIS 'DIVORCE-STORY)

PROCESSING PARAGRAPH 1:

Richard hadn't heard from his college
roommate Paul for years.
Richard had borrowed money from Paul
which was never paid back.
but now he had no idea where to find his old friend.
When a letter finally arrived from San Francisco,
Richard was anxious to find out how Paul was.

READY TO ACCEPT Q/A :

> What happened to Richard at home? <
RICHARD GOT A LETTER FROM PAUL.

> Who is Paul? <
RICHARD ' FRIEND.

> Did Richard want to see Paul? <
YES, RICHARD WANTED TO KNOW HOW PAUL WAS.

> Had Paul helped Richard? <
YES, PAUL LENT MONEY TO RICHARD.

> Why didn't Richard pay Paul back? <
RICHARD DID NOT KNOW WHERE PAUL WAS.

> How did Richard feel when the letter appeared? <
RICHARD FELT GLAD BECAUSE PAUL AND HE WERE FRIENDS.

> go <

377--l

PROCESSING PARAGRAPH 2:

Unfortunately, the news was not good.
Paul's wife Sarah wanted a divorce.
She also wanted the car, the house,
the children, and alimony.
Paul wanted the divorce, but he didn't want to
see Sarah walk off with everything he had.
His salary from the state school
system was very small.
Not knowing who to turn to, he was hoping
for a favor from the only lawyer he knew.
Paul gave his home phone number in case
Richard felt he could help.

READY TO ACCEPT Q/A i
> What was the letter about? <
PAUL AND SARAH WERE GETTING A DIVORCE.

> Did Paul write Sarah? <
NO, IT WASN'T SARAH, IT WAS RICHARD WHO GOT THE LETTER.

> Why was Paul upset about the divorce? <
PAUL AND SARAH WERE FIGHTING OVER THE FAMILY POSSESSIONS.

> What did Paul do for a living? <
PAUL WAS A TEACHER.

> What did Sarah want? <
SARAH WANTED TO HAVE THE CAR AND THE HOUSE AND THE KIDS AND
THE ALIMONY.
> Why did Paul write to Richard? <

PAUL WANTED RICHARD TO BE HIS LAWYER.

> go <

PROCESSING PARAGRAPH 3:

Richard eagerly picked up the phone and dialed.
After a brief conversation,
Paul agreed to have lunch with him the next day.
He sounded extremely relieved and grateful.

READY TO ACCEPT Q/A

> Why did Richard call Paul? <
RICHARD WANTED TO ARRANGE A MEETING WITH PAUL.

> Did Richard contact Paul? <
YES. RICHARD CALLED PAUL.

> How did Richard contact Paul? <

4

BY PHONE.

> How did Paul feel when Richard called? <
PAUL WAS HAPPY BECAUSE RICHARD AGREED TO BE PAUL'S LAWYER.

> go <

PROCESSING PARAGRAPH 4:

The next day, as Richard was driving to the restaurant,
he barely avoided hitting an old man on the street.
He felt extremely upset by the incident,
and had three drinks at the restaurant.
When Paul arrived Richard was fairly drunk.
After the food came, Richard spilled a cup of coffee on Paul.
Paul seemed very annoyed by this so Richard
offered to drive him home for a change of clothes.

READY TO ACCEPT Q/A :

> Why did Richard eat out with Paul? <
RICHARD WANTED TO DISCUSS THE DIVORCE CASE WITH PAUL.

> What happened to Richard on the way to the restaurant? <
RICHARD ALMOST RAN OVER AN OLD MAN.

> Why did Richard get drunk? <
RICHARD WAS UPSET ABOUT ALMOST RUNNING OVER THE OLD MAN.

> What happened at the restaurant? <
RICHARD SPILLED COFFEE ON PAUL.

> How did Richard feel when the coffee spilled? <
RICHARD WAS UNHAPPY.

> Why did Richard spill the coffee? <
RICHARD WAS DRUNK.

> When did Richard almost hit the old man? <
WHILE RICHARD WAS DRIVING TO THE RESTAURANT.

> Where did Richard have lunch with Paul? <
AT A RESTAURANT.

> go <

PROCESSING PARAGRAPH 5:

When Paul walked into the bedroom and found
Sarah with another man he nearly had a heart attack.
Then he realized what a blessing it was.
With Richard there as a witness,
Sarah's divorce case was shot.
Richard congratulated Paul and

.... _ .

5

suggested that they celebrate at dinner.
Paul was eager to comply.

READY TO ACCEPT Q/A :

> Why did Richard drive Paul home? <
SO PAUL COULD CHANGE HIS CLOTHES.

> What happened to Paul at home? <
PAUL CAUGHT SARAH COMMITTING ADULTERY.

> How did Paul feel? <
PAUL WAS SURPRISED.

> Why did Sarah lose her divorce case? <
SARAH COMMITTED ADULTERY.

> Why did Richard congratulate Paul? <
PAUL WON HIS DIVORCE CASE.

> go <

TEXT PROCESSING COMPLETED ON: DIVORCE-STORY

1.3 Problems, Problems, Problems

To give some idea of what BORIS is up against in trying to

understand this story, we are going to take a first pass through

the story and point out just a few of the problems involved:

(a) Richard hadn't heard from his college roomate Paul in
years.

Here BORIS is told a non-event. What should BORIS do with

this? Simply storing an event as not having occurred is

inadequate. When people read: "John walked into the room and

Mary wasn't there." they infer that John wanted to see Mary and

had been expecting her there. They do not simply store in memory

the fact: FALSE [LOC [MARYOFFICE] 1.

(b) . hich was never paid back.

- A

6

This phrase also refers to a non-event, but what is its

effect upon processing? Many people who read the story said that

Richard was willing to help Paul because Richard felt obligated

to Paul. Therefore, this non-event must be understood in terms

of the relationship between Paul and Richard. In addition, it

should be noted that this phrase never explicitly mentions WHO

failed to pay WHAT to WHOM, yet people never notice this, and

automatically fill these roles in from their knowledge about the

relationship between borrowings and repayments.

(c) ... but now he had no idea where to find his old friend.

How do we go about parsing an expression like (c)? And once

parsed, how do we represent its semantics? (I.e. what

representation should the parser have produced?) The word "had"

does not refer to physical possession. The word "old" does not

refer to the age of Richard's friend. How do we capture the

meaning of "finding" someone? Also, what is the connection of

(c) to (b) before it?

(d) When a letter finally arrived from San Francisco

People assume that the letter is from Paul even though this

is never explicitly stated.

(e) Unfortunately, the news was not good.

People assume that the entire second paragraph refers to

information contained in the letter and that Richard is reading

this letter. But we are never explicitly told when the letter

7]

context is entered (or exited).

(f) Paul's wife Sarah wanted a divorce.

How is "divorce" represented in memory? It must, at the

very least, refer both to marriage and to legal disputes.

Otherwise, the mention of Paul's need for a lawyer would make no

sense.

(g) ... but he didn't want to see Sarah walk off with
everything he had.

How is this to be parsed? To represent "walk off" as

physical movement is inadequate. "See" doesn't refer here to

vision. How do we represent "everything" or find its referent?

(h) His salary from the state school system was very small.

What does (h) have to do with the story? People immediately

realize the connection between a small salary and lawyers' fees,

alimony, etc. But how is this connection to be formalized in a

computer program?

(i) Not knowing who to turn to, he was hoping for a favor from
the only lawyer he knew.

How are "who to turn to", "hoping", "favor", "only" to be

parsed and represented? What must BORIS know about lawyers in

order to understand why "lawyer" has been mentioned? Notice,

also, that the story never explicitly states that Richard is the

lawyer being referred to.

(j) Richard picked up the phone and dialed.

8

The story never explicitly states who Richard dialed (or

engaged in conversation).

(k) He sounded extremely relieved and grateful.

What is to be done with affects such as "relieved" and

"grateful"? Furthermore, which character is the "he" that feels

this way?

(1) ... he barely avoided hitting an old man on the street.

How does "barely avoided" affect processing? How does BORIS

realize that "hitting" here refers, not to a fist fight, but

rather to a vehicle accident which almost occurred?

(m) When Paul arrived Richard was fairly drunk.

The story never explicitly states where it is that Paul has

arrived. People, however, automatically interpret Paul's arrival

in the context of their arrangement to meet. But how?

(n) ... so Richard offered to drive him home for a change of
clothes.

Why did Richard make this offer? Why does Paul have to

change clothes? Connections must be made between these events in

the story if such questions are to be answerable during Q/A

(o) When Paul walked into the bedroom ...

What is Paul doing in the bedroom? How did Paul get there?

Notice that scene changes are made implicitly in narratives. Nor

are we explicitly told that Richard drove Paul home, only that he

offered to.

(p) ... and found Sarah with another man he nearly had a heart
attack.

The story never explicitly states that Sarah was having an

affair. This must be inferred. Also, in this case, "heart

attack" refers to shock or surprise, not to a cardiac arrest.

(q) Then he realized what a blessing it was.

What is "blessing"? What does the word "it" refer to? What

is the effect of this sentence upon processing? What is

constructed in memory?

(r) With Richard there as a witness, Sarah's divorce case was
shot.

What does BORIS need to know about "witness" to successfully

understand this sentence? The word "case" here is not a

container or unit of measurement, as in "case of beer". Also,

"was shot" is metaphorical.

(s) Richard congratulated Paul and suggested they celebrate at
dinner.

How does BORIS represent "congratulated"? Why did Richard

make this suggestion? The story never says that Paul would win,

simply that Sarah would lose. But how is "losing a legal case"

to be captured in a computer program?

Notice that, unlike previous systems such as SAM [Il and

PAM [161, BORIS must deal with the specification, application

10

and interaction of many sources of knowledge. Among others, the

divorce story contains:

object primitives (phone, letter, coffee, clothes)
scripts (drive, dine)

settings (bedroom, restaurant)
goals (wanting a divorce)
plans (getting a lawyer)
affects (eager, anxious, grateful)
roles (lawyer, teacher)
themes (friendship, marriage)
physical states (drunk)
events (spilling the coffee)
social acts (petition judge in court)

In addition to these, which have been described elsewhere

[13], [14], [71, BORIS employs other types of knowledge.

These knowledge structures are discussed in section 2.

1.4 Overall Organization and Control

The BORIS story understanding system is comprised of four

basic processing units: the conceptual analyzer (the parser),

the event assimilator (EA), the question answering (Q/A) module,

and the English generator. These four modules interact to form a

complete story understanding system. All input to (and output

from) the program is in English.

Processing begins with the parser program which reads the

English text from left to right. This module generates

conceptual dependency (CD) structures [151 which capture the

semantic content of the phrases and sentences that it is reading.

These CD structures are kept in a short-term structure called the

Working Memory buffer (WMB).

The EA examines the concepts in WMB as they are produced.

A -.

11

It is this module's responsibility to produce an episodic memory

representation of the story. Each WMB concept must be understood

in the context of everything that has been read so far. In order

to do this, the event assimilator must consult a wide body of

world knowledge as well the representation that it has produced

for the preceding portion of the story.

The Q/A module in BORIS invokes the same conceptual analyzer

to read the English questions. As concepts are produced to

represent the question, the episodic story representation as well

as the associated semantic memory knowledge structures are

searched to find the answer. The question answerer uses search

heuristics and actually modifies episodic memory during the

search process. Inferences are thus being made at question

answering time. When the answer to the question is found, it is

formulated into the appropriate canonical form and passed on to

the English generator.

The generator takes both CD structures and episodic memory

structures as input, and produces English sentences as output.

The understanding process employed by BORIS is actually much

more integrated than this description implies. The parser must

frequently consult both episodic and semantic memory as well as

its lexicon to understand the phrases and sentences of the story

as they are read. In order to do this, it must elicit the help

of the EA to index the memory structures that are relevant. As a

result, the parser does in fact sometimes produce direct

references to knowledge structures and episodic memory units in

12

its representation. Thus there is a great deal of communication

and interaction between the parser and the event assimilator.

The question answering program and the English generator are

also involved with the BORIS memory organization. As shown in

Figure 1-1, all four of the BORIS modules must access and search

both episodic and semantic memory. Consequently, the entire

BORIS project shares a large body of code.

+-------------------------

I CONCEPTUAL ANALYSIS I < ----------------- +
I (C/A) I*

+------------------------- + *

/\
--- -------

:ISEMANTIC :
II MEMORY

II +--------------------------

I:I :* * *1 QUESTION ANSWERING 1
:IEPISODIC I (Q/A) I
:IMEMORY +----------------------+
--- -------

S* * I II\I * * I \
----------- *--- - * I +-------------------+

I EVENT ASSIMILATION I * * * * * * *1 GENERATOR I
I (EA) I --------------- + I (E/G)

+------------------------ ---------------------

Figure 1-1: OVERALL ORGANIZATION: Dashed lines represent control
flow while starred lines represent data flow.

13

2. KNOWLEDGE REPRESENTATION AND EPISODIC MEMORY

The most important knowledge structures in BORIS are MOPs,

META-MOPs [10] and TAUs. A MOP (Memory Organization Packet) is

a configuration of CDs formed into a discrete knowledge structure

by a standard set of semantic links (which are described at

length in [3]). TAUs (Thematic Affect Units) will be discussed

in section 2.3.

2.1 MOPs and META-MOPs

Unlike scripts, which only consider the actions performed by

characters within a given setting, MOPs also include their goals

and intentions. Associated with each MOP are a set of MOP-links,

which dynamically specify the relationship of one MOP to another

during story understanding, and expectations concerning what may

happen next. In addition, MOPs serve as indices into episodic

memory. Episodes in BORIS are reconstructed dynamically out of

several MOPs, META-MOPs and TAUs. This will discussed later.

Figure 2-1 shows an example of the MOP which represents

BORIS's knowledge about borrowing and lending objects. All MOP

diagrams have been simplified for the sake of clarity. For

instance, each node in the MOP points to a Conceptual Dependency

(CD) construction. However, each CD has been replaced by a

mnemonic name which indicates the event or goal which is

involved. The links i, m, and a represent intention, motivation

and achievement, respectively. These and others not shown here

are described at length in [3]. By convention, events and plans

are represented in the central column while goals are specified

L k 1

14

under each role in the outer columns of the diagram:

BORROWER LENDER

'WANT-OBJECT ------
I im

I ASK-FOR-OBJECT -III
I a i II
I----- - CONVINCED-TO-LENDII I

m I I m
------ GIVE-OBJECT-----------II II

II iI
WANT-TO-RETURN W---- WANT-RETURNEDII I

I a I
GIVE-OBJECT-BACK --------

MOP-links: I---- IPT-FRIENDSHIP ---- > MM-FAVOR
*

\-..-- ... -- > MM-BUSINESS-CONTRACT

Figure 2-1: M-BORROW

M-BORROW captures the essentials of lending. The borrower

wants something, so he asks the lender for it. If the lender

gives it, then the lender will want it back later and the

borrower will feel obligated to return it. BORIS uses this

knowledge structure to understand the borrowing event in the

first paragraph of the divorce story. When a lending occurs,

BORIS uses M-BORROW to create an expectation that the object

borrowed will be returned at some point in the future. When

BORIS reads "which was never paid back", it can understand "paid

15

back" in terms of M-BORROW and automatically infer the missing

roles.

In addition, M-BORROW contains a number of MOP-links, which

examine the context to determine which META-MOPs may be relevant.

If the situation is informal (for example, the borrower and

lender are friends) then MM-FAVOR is activated. (The prefix

"IPT" refers to interpersonal themes.)

BORIS knows that friends like to: a) socialize together, b)

know how the other is doing, and c) do things for one another.

If these conditions are violated too often, then the friendship

may be terminated.

MOP-links are uni-directional. In other words, M-BORROW may

activate MM-FAVOR but the reverse is not true. This is because

almost any activity could count as a favor. For example, taking

someone to the movies might constitute a favor. MM-FAVOR cannot

be expected to know of all such possibilities. MM-FAVOR is shown

in Figure 2-2.

It is important that BORIS understand the lending event at

both the MOP and META-MOP levels. First, each knowledge

structure captures a different set of expectations. At the

M-BORROW level, BORIS expects Richard to repay the money to Paul.

His expectation is rather specific and, incidentally, is never

fulfilled in the story. At the MM-FAVOR level, however, the

expectation that Richard will help Paul is later fulfilled when

Richard agrees to represent Paul in court. This expectation for

16

FRIEND-A FRIEND-B

WANT-FAVOR ------- THEMATIC
I m OBLIGATION
ASK-FOR-FAVOR ------- I
(invoke theme) I Im

II I
a iI I

I-------- ---------- PERSUADED
I I

m I I
THEMATIC ------- DO-FAVOR (agency)
OBLIGATION

Figure 2-2: MM-FAVOR

a return-favor would exist whether Richard had repaid Paul or

not. Thus, MM-FAVOR represents "vague" expectations, in which we

assume Richard will do something for Paul, but we're not sure

exactly what.

META-MOPs are also important because they represent

knowledge about the event which can not be captured at the MOP

level. For example, what if the story had read:

Richard had borrowed $800 from Mr. Jones
at the bank, which he had never paid back.

This lending is definitely NOT a favor, but rather a

business contract, and the inferences following from Richard's

failure to pay are very different.

Some MOPs are difficult to specify. In BORIS, divorce is a

MOP. But how should a divorce be represented? What goes into

M-DIVORCE? Each time we tried to specify the content of

M-DIVORCE, we ended up talking about other knowledge structures,

17

such as marriage, adultery, custody battles, etc. In fact, very

little is in M-DIVORCE, which consists mainly of MOP-links to

other knowledge structures. Figure 2-3 shows a portion of what

BORIS knows about divorces.

SPOUSE-A SPOUSE-B
-- -- - - -- --

possible
WANT-TERMINATE -------------------- WANT-TERMINATE
MARRIAGE conflict MARRIAGEATION

CONTESTED
DIVORCE

possible
WANT-FAMILY ---------------------- WANT-FAMILY
POSSESSIONS conflict POSSESSIONSI ~II

CONTESTED
SETTLEMENT

MOP-link: * ---- conflict ---- > MM-LEGAL-DISPUTE

Figure 2-3: M-DIVORCE

When many people hear about a divorce, they do not

necessarily think about lawyers and legal disputes. If people

thought about all the knowledge structures potentially related to

a given event, they would be overwhelmed. Yet, if a lawyer is

mentioned in the context of a divorce, people immediately

understand why this is relevant. BORIS accomplishes this by

means of its MOP-links. If BORIS reads that the spouses have a

major goal conflict, then it activates MM-LEGAL-DISPUTE. This

knowledge structure represents what BORIS knows about disputes

which are resolved through the process of petitioning a judge in

18

court [14]. Since a lawyei is needed to perform these

petitions, its relevancy can then be understood.

MM-LEGAL-DISPUTE is described in Figure 2-4.

DISPUTEE-A DISPUTEE-B
--------------- ---- -------- I

conflict
GOAL-A --------------------------- GOAL-BI I I II

I iDISPUTE i I

I III

GET-LAWYER-A GET-LAWYER-B
(petition) (petition)

JUDGE
aI------

--------------- DECISION-A a
DECISION-B-----------

Figure 2-4: MM-LEGAL-DISPUTE

That is, two individuals have goals in conflict. Each

lawyer presents a case to the judge. The judge decides favorably

in terms of one and unfavorably in terms of the other. The

merits of the case depend upon the nature of the dispute. For

example, in contractual disputes, the judge is likely to decide

unfavorably for the disputee who broke the contract. (This is

how BORIS realizes that Sarah's adultery has caused her to lose

her case.)

2.2 Memory Overlays

When a MOP or META-MOP is activated via a MOP-link, the

relationship between the activating knowledge source and the

activated knowledge source must be known. For example, BORIS

19

must realize not only that the divorce has caused a legal

dispute, but also that the issue under dispute within

MM-LEGAL-DISPUTE involves a property and custody settlement.

BORIS accomplishes this by "overlaying" one knowledge structure

on another. An "overlay" occurs by specifying which component in

one knowledge structure is equivalent to another component within

some other knowledge structure. Figure 2-5 shows how

MM-LEGAL-DISPUTE, M-LAWYER, MM-PROF-SERVICE, M-DIVORCE and

MM-FAVOR are overlaid.

MM-LEGAL-DISPUTE MM-PROF-SERVICE MM-FAVOR

• * DISPUTE DO-SERVICE* * ... I
•* ... I•• .• *1 I
• *1 DO-RETURN
1 GET-i.AWYER-A * PAY-MONEY * FAVOR * *1

-*-------------------------*--------------------* * * *l

•** **** *** * *

• M-DIVORCE * M-LAWYER *
------------------------------- ----------------- *

* I ... [* * * * * TAKE-CASE I *
• I I I ... I *
•* * * CONTESTED I I [*

I SETTLEMENT I I PETITION * * * *

Figure 2-5: MEMORY OVERLAYS

The CONTESTED SETTLEMENT in M-DIVORCE is the DISPUTE at

issue in MM-LEGAL-DISPUTE. The need-for-a-lawyer aspect of the

dispute (i.e. GET-LAWYER-A) points to what BORIS knows about

lawyers. As Richard prepares Paul's case (i.e. PETITION), he is

both performing a professional service and doing an old friend a

favor. L-4

20

This overlay scheme has several advantages:

1. Each knowledge structure can be specified

independently of other knowledge structures, and then

later on become connected to other structures via

HOP-links.

2. Each knowledge structure need know only that which is

is directly relevant to it. For example, H-LAWYER

contains role information about what lawyers do (e.g.

meet with the client, gather evidence, etc.).

However, the fact that the lawyer is performing this

task as a means of earning his living, is captured by

MH-PROF-SERVICE, which represents the contractual

exchange of money for ANY type of professional

service. Thus, NH-PROF-SERVICE need not be copied for

doctors, plumbers, etc. This allows for economy of

storage (101.

3. Each knowledge source need not be activated unless an

event occurs which is directly relevant to it. For

example, people do not normally think of the need to

pay the lawyer unless payment (or failure or refusal

to pay) is explicitly mentioned.

4. A given event can be understood from several

perspectives. When Richard and Paul meet at lunch, we

have both two old college buddies getting together to

socialize after not having seen each other in a long

time, and a lawyer and a client meeting to discuss a

21

legal case. Since people have no troubles maintaining

multiple perspectives -- e.g. Paul is a spouse,

college friend, teacher, disputee and legal client --

we want BORIS to have the same capability.

2.3 TAUs

Not every type of knowledge can be organized around MOPs or

META-MOPs. For instance, what should we do with the following

sentence in the story?

Not knowing who to turn to, he was hoping for a favor from the
only lawyer he knew.

It is evident that Paul perceives himself to be in serious

trouble. He doesn't know what to do. He's not sure that Richard

will help him and he doesn't know anyone else able to help.

Later we read:

He sounded extremely relieved and grateful.

This comes after Richard agrees to take the case. It is the

knowledge we have about Paul's dilemma that allows us to

determine that "he" in the sentence above is referring to Paul

and not Richard.

BORIS makes use of a knowledge structure called a TAU

(Thematic Affect Unit). TAUs are used to capture aspects of both

Affect Units [91 and TOPs (101. In the case above,

TAU-DIRE-STRAITS is used by BORIS to aid in understanding Paul's

situation. This TAU represents knowledge about how people feel

and react when they are in a crisis. Thus, the "extreme relief"

22

felt by Paul can be predicted using TAU-DIRE-STRAITS.

Below are some of the TAUs used in the divorce story and the

events which they help represent:

TAU-DIRE-STRAITS - Paul doesn't know who to turn to.

TAU-CLOSE-CALL - Richard nearly kills an old man.

TAU-REG-MISTAKE - Richard spills coffee on Paul.

TAU-RED-HANDED - Paul catches Sarah in bed.

TAU-BROKEN-OBLIGATION - Sarah has been having an affair.

TAU-RIDDEN-BLESSING - Paul realizes his problems are solved.

TAUs have the following components which help distinguish

them from MOPs:

1. They are thematic in nature. That is, they often

capture knowledge which people represent in adages.

These adages tell about how people respond to failures

in planning. For example, "A friend in need is a

friend indeed" sums up some aspects of

TAU-DIRE-STRAITS, while "Every cloud has a silver

lining" sums up some aspects of TAU-HIDDEN-BLESSING.

2. TAUs have a strong affective component. For instance,

Paul is very anxious about getting Richard to be his

lawyer; Richard feels very upset over his near

accident on the road; Paul is shocked to find Sarah

with another man, etc.

3. TAUs involve variations from the standard goal/plan

processing handled by MOPs. In most TAUs, a plan goes

23

wrong (or almost goes wrong). That is, most TAUs

arise as unexpected events in a narrative. The near

accident, the spilled coffee, and the discovered

affair, are all surprising to the characters involved.

4. Unlike MOPs, TAUs are activated by idiosyncratic

indices which are recognized in a bottom-up manner.

For example, TAU-RED-HANDED is activated when a goal

to violate a norm, which requires secrecy for its

success, fails during plan execution due to a

witnessing.

5. TAUs are sensitive with respect to point of view. For

example, catching someone red-handed is a very

different experience than that of being caught red

handed. Thus, the index into memory would depend upon

which role is being focused on.

2.4 Semantic vs. Episodic Memory

We consider the dichotomy between semantic and episodic

memory to be artificial. This is especially true in systems

systems which learn and programs which model long-term human

memory [5].

We believe that semantic memory is created through episodic

experience and, thus, there can be no clean distinction between

the two. However since BORIS is not a learning project, it is

convenient to talk about what BORIS knows before it reads the

divorce story as its "semantic" memory, and what it has

24

constructed after reading the story as its "episodic" memory.

BORIS's episodic memory consists of fragmentary

instantiations of MOPs, META-MOPs and TAUs. The central

organizing concept is that of an "episode", which consists of an

instantiation of several interrelated knowledge structures. An

episode is analogous to a script except that it is dynamically

constructed out of other relevant knowledge structures rather

than statically organized. Figure 2-6 shows a simplified

"picture" of story memory after having read the divorce story.

Each episode is underlined by "==":

By examining this diagram, we can see that: Richard

received a letter about a divorce which required getting a lawyer

as a favor. A meeting was arranged by phone and an accident

almost occurred while on the way to the meeting, etc.

Each episode organizes those knowledge structures which are

related to a given event. For example, EP7 represents the event

of Paul catching Sarah breaking their marriage contract by having

an affair. One way episodes are connected is indirectly through

goals. For example, the goal of driving is instrumental to the

goal of meeting with Paul. Episodes can also be interconnected

via TAUs. TAU-HIDDEN-BLESSING represents those situations in

which an event occurs that can be viewed from both positive and

negative perspectives. So Sarah's adultery is bad from the

marriage perspective, but good from the legal perspective.

25

MM-PERS-COM
(comment: I

most links EPI: M-LETTER --- I
are mediated -I MM-FAVOR RETURN
via goals) J I FAVOR

I ----------- I EPO: M-BORROWI ... m

I- ---------- I
TAU-DIRE-STRAIGHTS ---- > MM-LEGAL-DISPUTE I I* I I I I

: I I I I 4MM-PROF-SERVICE
:...... EP2: M-DIVORCE RT-LAWYER I

I Iw
M-LAWYER ------ *

MM-PERS-COM I
I LEGAL-MEET

rP3: M-PHONE --------------------------------- and MM-SOC
I Ii

TAU-REG-MISTAKE I

TAU-CLOSE-CALL ----- > M-VEHICLE-ACC :... EP4: MM-MEETING
II: O ---

:.......... EP5: H-DRIVE
I II I

I I I.-.- --------------- I
M-IMBIBE-ALCOHOL I

I-------I----------- ------------- II I-----..*----------..
I I I M-RESTAURANT
I \I/ I i

PROPEL (liquid) I M-MEAL
\ I IMM-LEGAL-DISPUTE

(comment: EP6: M-DRIVE II\
ep6 is connected .
to ep7 via TAU-RED-HANDED
setting info. M-MARRIAGE-CONTRACT
for changing I
clothes) M-ADULTERY < ---- TAU-BROKEN-CONTRACT

EP7: M-SEX II I
TAU-HIDDEN-BLESS ING

Figure 2-6: EPISODIC MEMORY

26

3. PARSING

Parsing here refers to the task of conceptual analysis,

which involves extracting the conceptual content of each English

sentence. BORIS makes use of a demon-based parser designed by

Michael Dyer. It is an outgrowth of Reisbeck's request-based

parser [121. BORIS contains a word and phrasal lexicon, where

each lexical entry has one or more "demons" associated with it.

Demons represent expectations and other processing information.

Demons may "spawn" other demons and each demon is in control of

its own "life" and "death". (Section 8.2 contains an execution

trace of the parser during Q/A.)

3.1 Depth of Parsing

The goal of conceptual analysis is to map natural language

input to a representation of its meaning. However, since

high-level memory structures (e.g. TAUs and MOPs) as well as

low-level ones (e.g. CDs) are used for story representation in

BORIS, we have to determine what level of representation the

parser should produce.

Choosing the proper level of representation is important in

BORIS for the following reason: Since the memory searching

process for parsing during Q/A (question answering) time and EA

(event assimilation) time are essentially the same, (the

differences are discussed in section 5) only one parser is

employed in the system. If the parser does not make enough

inferences and understands the input at a level lower than it

should, then it will have trouble constructing the right index

27

for memory search during Q/A. , Consider:

When Paul walked into the bedroom and found Sarah with
another man,

The parser could understand this sentence at two different

levels:

1. It could just interpret the above sentence as Paul
seeing Sarah in the proximity of another man in a
bedroom, and then let EA figure out that Sarah was
having an affair and committing adultery.

2. Alternatively, the parser could understand the above
sentence directly as Sarah having an affair with
another man. I.e. the inferences would be done by
the parser instead of by EA.

The final memory node created by EA in the story

representation should be the same for both cases.

Which level is more appropriate? The answer depends on the

parsing process required during Q/A. Consider the following

question asked during a subsequent Q/A session:

How did Paul feel when he found Sarah with another man in the
bedroom?

If the parser understands the question at the first level,

the memory search will be based on mere physical proximity and

the search will not succeed because the event has not been stored

that way in the first place. Therefore, Q/A would need another

level of processing to make the inference about adultery from

"Sarah and another man in the bedroom". On the other hand, if

the parser produces a representation at the second level, then

neither EA nor Q/A needs to worry about making such inferences.

Instead of giving the burden to both EA and Q/A , we leave it to

28

the parser whenever the same kind of inference is required at

both EA time and Q/A time. (This is actually a good argument for

further integrating both EA and the parser into a single process.

See section 7.1.)

3.2 Parser/Memory Interaction

Parsing is a process of knowledge application. A tremendous

amount of knowledge is used to correctly understand even a simple

sentence. This knowledge must include the episodic memory

constructed by EA -- in addition to lexical, linguistic, and

general world knowledge.

What does it mean to use episodic memory in parsing? Why is

it useful for parsing? The following sections illustrate the

usefulness of memory interactions at EA time.

3.2.1 Accessing Static Episodic Structures

3.2.1.1 MOPs

The first memory interaction the parser performs is to

examine the instantiated memory nodes created by EA to facilitate

inferences. This type of memory lookup is frequently used to

infer slot fillers because often a sentence leaves out some

information mentioned previously. So the parser has to retrieve

information from the memory. Take a simple case from the story:

Richard had borrowed money from Paul ...

At this point, the parser has no difficulty in producing a

correct representation will successfully interpret it as a

borrowing event which occured some time in the past. However,

7.

29

the second part of the sentence

which was never paid back.

does not explicitly tell us who paid what back to whom. This

problem can easily be solved with the help of memory. The

semantic memory says the borrower pays back the borrowed object

to the lender; the episodic memory says the borrower is Richard,

the lender is Paul, and the borrowed object is the money. Thus,

when roles are missing, the parser searches the most recent

active MOP for an expected event, and if a match occurs, it uses

the bindings already available in episodic memory to infer the

missing roles.

3.2.1.2 TAUs

Memory is also helpful for resolving pronouns. Here is an

example from the story:

a) He sounded extremely relieved and grateful.

What does "he" refer to? There seem to be two solutions to

this problem. First, we can look at the structure of the

previous sentence:

Paul agreed to have lunch with him the next day.

A simple minded syntactic rule can be formulated to resolve

the pronoun:

IF the first participant in the current sentence
is referred to by a pronoun,

AND there is more than one possible referent
satisfying gender agreement,

THEN the pronoun refers to the first participant

mentioned in the last sentence.

30

Using this rule, BORIS will correctly infer that "he" is

Paul. Or can we? What if the story had read:

After a brief conversation, Richard arranged to have a
meeting with Paul to discuss the case the next day. He
sounded extremely relieved and grateful.

Here, although the first character mentioned in the first

sentence is Richard, the "he" in the second sentence still refers

to Paul. So a more powerful and general solution is needed.

This requires accessing the 'appropriate' knowledge structure --

i.e. one which can determine the referent. But how is this to

be done?

Realizing who "he" refers to involves understanding what

"relieved" and grateful" imply from a goal-processing point of

view. In BORIS, affects are organized around TAUs. Furthermore,

"relieved" and "grateful" refer to the following affect/goal

situations:

If x feels "relieved"
Then x has achieved a goal which
x felt might not be achieved,
or x had a momentary preservation goal
activated by a 'fleeting' threat.

If x feels "grateful"
Then an agent, y, has either

achieved a goal for x,
or x has found an agent to
achieve that goal.

But these situations are exactly what is captured by

TAU-DIRE-STRAITS, which was instantiated earlier in memory (see

section 2.3). In TAU-DIRE-STRAITS it was Paul who was being

threatened with financial loss and who feared that Richard may

not help. It was Richard who achieved Paulos goal of finding a

31

lawyer to represent him. Thus, by examining this TAU, the parser

finds that Paul is the one in trouble, and is the likely referent

for "he" above.

3.2.1.3 Scenarios

The scenario map [3], an episodic memory access structure

discussed in 4.1.3 gives helpful hints on making important

inferences. Recall this example:

When Paul walked into the bedroom and found Sarah with
another man...

First, when the parser reads 'person A with person B', it

tries to find an activity that is associated with A and B. One

way is to look at the locations of A and B, as in:

1. Bill saw John with Mary in a theater.

2. Bill saw John with Mary in a restaurant.

Sentence 1. implies that John and Mary were watching

movies, while 2. implies John and Mary were eating in a

restaurant. Using this same strategy, the parser infers that

Sarah was having sex, because the current scenario is BEDROOM and

M-SEX is the social activity which occurs in this setting.

Word sense disambiguation is a major parsing problem. The

approach of the BORIS parser is to query the memory for clues.

Consider the following example from the story:

The next day, as Richard was driving to the
restaurant, he barely avoided hitting an old man on the
street.

The second part of this sentence has at least two possible

32

interpretations:

1. Richard nearly had a fight with an old man.

2. Richard's car nearly hit an old man.

There are two ways that the word "hit" can be disambiguated

in this example. The parser, upon reading the word "hitting",

pauses to look in memory and finds that M-DRIVE is the current

active MOP labeled by EA. In BORIS' semantic memory, a car

accident is partially represented as:

(M-VEIH-ACCIDENT
TYPE MOP
NODE TEMPLATE
ROLES (VEH-OPERATOR ACC-VEHICLE VICTIM)
MAINCON EV-COLLIDE
GOALS (G-AGENT-P-HEALTH G-P-HEALTH)
LCONTEXT PTRANS

There is a bottom-up link called DRIVE->VEH-ACCIDENT which

connects M-DRIVE to M-VEH-ACCIDENT in the following manner:

(DRIVE->VEH-ACCIDENT
TYPE MOP-LINK
NODE TEMPLATE
IN M-DRIVE
M-LINK-CLASS BOTTOM-UP
CONNECTS M-VEH-ACCIDENT
ROLE-EQS [(DRIVER. VEH-OPERATOR)

(VEHICLE . ACC-VEHICLE)]

This represents the knowledge that car accidents occur

within driving contexts. But there is no such link from the

representation of "fighting someone" to M-DRIVE. So the parser

decides that the second interpretation is more reasonable than

the first.

The word "avoided" can also help to disambiguate "hit" to

mean car accident because "avoid" always expects to be followed

33

by an unintentional or undesirable act with respect to the actor.

Since a car accident is both unintentional and undesirable under

normal circumstances, the second interpretation of '%it" would be

chosen by the parser.

3.2.2 Accessing Dynamic Memory Requests

A more interesting type of memory interaction is the

parser's ability to look at the active memory requests on the EA

agenda list. The parser is aware of what EA expects to see from V

the story, so context is playing a crucial role in conceptual

analysis.

Consider this example:

Unfortunately, the news was not good.

If this sentence were given without the first paragraph, the

reader might even have trouble with the first word.

"'Unfortunately" requires prior context to relate the unfortunate

event to. Moreover the reader would probably infer that the news

is from a news report on TV or radio. However, given the story

the reader automatically knows that "news" refers to the content

of the letter. How does the program make this inference?

When the story understander sees letter-arrival, it creates

a top-down expectation about the letter's content. As the parser

reads about the "news", it notices the EA agenda has a request

for a mental object and "news" is certainly one. So the parser

signals the entrance of the letter, although the story doesn't

explicitly say so. As a result, the follow is representation,

--------------------......--- - .-i----

34

produced:

(AFFECT
ACTOR (NIL)
OBJ-TYPE (AVERSIVE)
CON (MTRANS

ACTOR (NIL)
MOBJ (INFORMATION

TYPE (AVERSIVE)
LOCAL-CONTEXT (EPl-ROLE3))))

Notice that the LOCAL-CONTEXT slot is set to EPI-ROLE3 which

is the message within the letter. Local contexts are discussed

in 4.3.2.

Agenda-based processing is also useful in inferring role

bindings. Consider the following sentence from the story:

Richard eagerly picked up the phone and dialed.

This sentence does not tell us who Richard was calling.

However, the reader assumes it to be Paul. When EA processed

"Paul gave his home phone number in case Richard felt he could

help" in the previous paragraph, it created a positive

expectation for Richard to call Paul on its agenda request list.

When the parser reads the current sentence, it creates the

following representation:

(H-PHONE
CALLER Richard
CALLEE nil
EVENT (EV-MAKE-CALL))
AFFECT (AFFECT IS (POS)

ACTOR (RICHARDO))

At the end of the sentence, the parser still cannot find the

slot-filler for CALLEE, so it searches the agenda requests list

r 4. • .- o

35

and finds that a M-PHONE was already expected to occur.

Moreover, since the CALLER is Richard as predicted, it makes the

inference that the CALLEE is Paul. The search process here is

very similar to the search process during Q/A except that, during

Q/A, the episodic memory will be searched instead of the agenda

request list.

3.2.3 A Comparison: Memory-Based Versus Agenda-Based

The two types of parser/memory interactions discussed above

have overlapping functions. They are both helpful in inferring

role bindings: the H-BORROW example illustrated a memory-based

scheme whereas the H-PHONE example illustrated anaagenda-based

scheme. When implicit information is retrieved from episodic

memory, we don't have to worry about possible errors in that

information. For example, once we are told who the BORROWER and

the LENDER in M-BORROW are, we don't expect the role bindings to

change unless there is another incidence of M-BORROW. However,

inferences based on top-down agenda requests may be erroneous

[4]. When EA expects Richard to call Paul, it is still possible

that Richard has called somebody else. For example, our story

could have been:

Richard eagerly picked up the phone and dialed. He
thought his best friend Bill, who was also a lawyer but
specialized in divorce cases, would be in a better
position to help Paul. When Bill answered the phone,
Richard explained the whole story to him and...

In this case, the CALLEE of M-PHONE should be Bill, not

Paul. This type of erroneous inference can be circumvented by

tagging all the agenda-based inferences. Whenever such

AkL

36

inferences are found to be inconsistent with the explicitly

stated values, the explicit information will overwrite the

inferred values.

37

4. EVENT ASSIMILATION

The event assimilator (EA) is the module of the BORIS system

responsible for encoding a representation of the story as

sentences are read. This representation has been referred to as

episodic memory. Encoding is really an inferencing process. As

each goal, event, or state comes into the EA, it must fit the

added information into the current representation of the story.

To do this, inferences must be made to relate the incoming

concept to other concepts already in the representation.

Consider for example this passage from the second paragraph

of the divorce story:

Unfortunately, the news was not good. Paul's wife
Sarah wanted a divorce. She also wanted the car, the
house, the children, and alimony. Paul wanted the
divorce, but he didn't want to see Sarah walk off with
everything he had. His salary from the state school
system was very small.

In processing the final sentence, the EA must infer that

having a low salary relates to Paul's desire to protect his

possessions. Without making this inference, the EA could not

understand the relevance of this sentence to the divorce. It

therefore could not relate the low salary information to the

divorce in the story representation.

EA is broken down into three processing units: the

bottom-up processor, the top-down processor, and the meta-story

knowledge monitor. These units work together to build the

episodic memory representation of the story, including the

episode nodes, the thematic nodes, the scenario nodes, and the

38

semantic links that tie these nodes together.

4.1 Bottom-Up Processing

The bottom-up processor in the BORIS event assimilator is

charged with the task of applying context-independent rules.

These bottom-up rules may be subdivided into three different

classes, based on the the circumstances under which they are

applicable and the effect that they have during processing.

These include episodic memory creation, goal/plan processing, and

scenario mapping.

4.1.1 Episodic Memory Creation

One circumstance that calls for the access and application

of bottom-up rules arises when EA cannot directly fit the

incoming concept into any current episodes. This always occurs

when BORIS processes the first sentence of a new story as in:

Richard hadn't heard from his college roomate Paul for years.

Since this is the first sentence, there do not yet exist any

top-down expectations. However, EA is able to build a

relationship structure, capturing the roommate relationship

between Richard and Paul. When this structure is built, many

stereotypical top-down expectations are brought in from the

semantic memory knowledge structure for roommates. These

expectations are then able to assimilate the concept of "not

having heard from" during top-down processing. The next phrase

in the story:

39

Richard had borrowed money from Paul,

is the first event that is described in the story. In this case,

EA is able to build a new episodic structure for the borrowing

episode. This structure includes expectations relevant to

financial agreements which it is able to obtain from the

borrowing MOP.

These examples illustrate the most trivial class of episodic

memory creation which arises when the parser is able to directly

access a semantic memory knowledge structure, such as a MOP via

the explicit words used in the passage. The EA then merely

creates an episodic instantiation based upon the knowledge

structure. Of course, this only takes place when the event

cannot be explained via a top-down process.

Another, less trivial example of episodic memory creation is

illustrated by the following phrase from the first paragraph of

the divorce story:

When a letter arrived from San Francisco,

In this example, a bottom-up rule is associated with the

token for "letter" which checks to see if the letter is the

object of a PTRANS. If it is, the rule accesses the letter MOP,

which eventually leads to the creation of an episode structure

for letter sending, friendly communications, etc.

The preceding examples show that bottom-up rules associated

with events and tokens can serve as indices to semantic-memory

knowledge structures. Memory-accessing rules are also associated

40

with goals, states, and various types of thematic predicates.

One should bear in mind however, that the bottom-up process

causes only empty templates to be created in episodic memory. It

is the top-down process that must fill in these templates.

4.1.2 Goal/Plan Processing

Another circumstance under which bottom-up rules are

accessed and applied arises in goal/plan processing. The BORIS

event assimilator uses a set of goal/plan rules to monitor

incoming concepts for key goal situations such as goal conflict

and goal competition [16]. (BORIS also uses top-down mechanisms

for goal monitoring which is described in section 4.2.) The

following sentence is taken from the second paragraph of the

divorce story:

Paul wanted the divorce, but he didn't want to see Sarah take
everything he had.

In the second phrase, we see what may be described as a

"non-goal." The following bottom-up goal rule interprets this

non-goal in a reasonable way:

IF person P1 is said not to have goal G
which involves an ACT by P2,

THEN there is GOAL COMPETITION
between P1 and P2 regarding the goal
to be achieved by the ACT

Its application allows the event assimilator to interpret the

incoming state as a particular instance of goal competition. The

competition is then readily picked up by a divorce expectation

during top-down processing.

Another goal/plan rule is illustrated by the following

41

example of a "non-event" from the first paragraph of the divorce

story:

Richard had borrowed money from Paul, which was never paid
back, but now he had no idea where to find his old
friend.

The second phrase above is an example of how a non-event can

be used to generate an expectation for a planbox failure [13].

The following rule reflects how non-events are often related to

failed goals:

IF an event E is said to not happen,
AND there is an active goal G which intends E,

THEN form an expectation for a prerequisite
failure for the event E. If the prerequisite
failure is found, then mark G as blocked-by
that failure.

The use of this rule allows BORIS to realize that Richard's

failure to pay Paul is explained by his inability to find Paul.

Furthermore, in the application of this rule, the planbox

prerequisite state is indexed by the ATRANS, which specifies the

setting enablement required before ATRANS can occur.

4.1.3 Scenario Mapping

The scenario map is a temporally and spatially oriented

episodic-memory access structure. It consists of a time-ordered,

linked list of scenario descriptors. Each of these descriptors

encodes the characters involved in and the events taking place at

one particular setting.

The creation of the scenario map entails monitoring the

characters as they progress from one location to another

42

throughout the story. A few very simple bottom-up rules can

sometimes be useful in this monitoring process. Consider the

following hypothetical passage.

Pete was enjoying his new book when suddenly he
remembered e that he had to pick up his children at
school. He quickly ran out of the park.

Notice that the context created by the first two sentences

in no way indicates where Pete is while he is reading the book.

In fact, the default inference might be that he is at his home.

The third sentence however conclusively indicates that he was

reading in a park. The BORIS parser would represent this last

sentence with something like the following:

(PTRANS ACTOR Pete
OBJECT Pete
FROM -park-
TO -school-

The CD predicate PTRANS serves as an index into a set of

scene transition rules. One of these rules is sensitive to the

FROM slot and will attempt to determine the location of the

current scene. This rule is described as follows:

IF the OBJECT slot is filled by a
character in the story,

AND the FROM slot specifies a location,
AND this location is not contained
within the currently known scene location,

THEN this location is the previous
scene location.

There are other analogous rules for determining the location

of the next scene in the scenario map. These rules are based on

explicitly stated locations given in the story. Consequently,

they will override any existing theory of what the current or

43

next scene locations might be.

Other bottom-up, scenario rules are equally simple. These

rules monitor such events as new characters entering a scene,

characters leaving a scene, and episodes occurring while

characters are in transition from one scene to the next. All of

the scenario-mapping, bottom-up rules are indexed by the

predicate of the concept produced by the parser.

Most of the scenario-mapping process does not, however,

occur in the application of bottom-up rules. Scenario mapping is

largely driven by the top-down event explanation process that

will be described in the next section. The activation of

knowledge structures and the use of meta-story knowledge during

event assimilation generally provide most of the information

needed to generate the scenario map.

4.2 Top-Down Processing

The top-down event assimilation processor in BORIS must

access a wide variety of knowledge sources to facilitate the

creation of an episodic memory representation of the story.

Furthermore it must integrate these various knowledge sources in

order to fully understand episodes that fill more than one

perspective in the story. Only the knowledge structures that are

relevant to a particular episode should be activated. EA must

avoid the proliferation of useless inferences that can be

associated with the undirected application of any and ali

associated knowledge structures.

44

4.2.1 The BORIS Process Model

Top-down event assimilation in BORIS is a process of

episodic and semantic memory search. Recall that episodic and

semantic memory are intertwined with MOPs. As a concept comes in

from the parser, EA must search the active context of the story

in order to determine how the concept fits in. This search

process is based on a notion of what constitutes the active

context of a story as sentences are being read.

The active context of a story is defined in the BORIS system

by the following simple recency principle:

PRINCIPLE OF ACTIVE CONTEXT: The active status
of an episode is based on two recency factors:

I) when the episode was created,
2) when the episode was used to make an

inference.

The heart of the EA in BORIS is the episodic memory buffer

or the EP-LIST. The EP-LIST is maintained as an ordered list of

the episodes that are generated in the story representation

during the understanding process. This list is kept ordered on

the basis of the principle of active context. As episodes are

generated, they are added to the beginning of the EP-LIST. The

list is rearranged throughout the understanding process to

explain incoming events as some episodes are referred to more

frequently than others.

Consider for example, the first two paragraphs of the

divorce story:

Richard hadn't heard from his college roommate Paul
for years. Richard had borrowed money from Paul which
was never paid back, but now he had no idea where to find

45

his old friend. When a letter arrived from San
Francisco, Richard was anxious to find out how Paul was.

Unfortunately, the news was not good. Paul's wife
Sarah wanted a divorce. She also wanted the car, the
house, the children, and alimony. Paul wanted the
divorce, but he didn't want to see Sarah take everything
he had. His salary from the state school system was very
small. Not knowing who to turn to, he was hoping for a
favor from the only lawyer he knew.

By the time BORIS has processed the first paragraph, it has

generated a borrowing episode and a letter episode. A divorce

episode is generated during processing of the second sentence of

the second paragraph. At this point the EP-LIST contains:

EP-LIST - [<divorce episode>
<letter episode>
<borrowing episode> I

The last sentence of the second paragraph is understood

using two of these existing episodes: the divorce episode and

the borrowing episode. Contracting a lawyer is understood in

terms of the divorce. A return favor is understood as fulfilling

an obligation from the borrowing episode which took place long

ago. The borrowing episode is brought to the forefront since it

is used to process this incoming event:

EP-LIST - [<borrowing episode>
<divorce episode>
<letter episode>

One can view episodic memory in BORIS as a network of

interconnected episode and thematic nodes as shown in Figure 4-1.

As a concept comes in from the parser, EA searches through

this network of nodes for an episode that will explain the new

concept. The search order of these nodes is determined by their

46

I I

I EPO I I EPL I
IBorrowing I--+ ILetter I --------- + I
-------- + I + .I-- ------ +

I I I EP2 I
I I IDivorce II +-..--...+ ---I---+
I I RELO I I I
+.----Friends I ---------- + I

+------------+ I
4------------
I RELI I
IMarriage I

+------------

Figure 4-1: EPISODIC MEMORY NETWORK

ordering on the EP-LIST. Consequently, more active episodes will

be searched first. The search process continues until the

incoming concept has been explained. The overall algorithm of EA

is shown in Figure 4-2.

4.2.2 Concept Explanation

An episode consists of a set of partial instantiations of

interrelated knowledge structures. Each of these knowledge

structures brings its own interpretation of the events within the

episode along with its own set of expectations pertaining to the

episode. Consider, for example, the restaurant episode in the

divorce story.

There are expectations associated with the restaurant MOP.

A waitress will probably come to serve the patrons. They will

probably order from a menu, and so on. There are expectations

associated with the lawyer MOP (for the legal consultation).

Richard and Paul will probably discuss the divorce case. There

-A--

47

I EVENT ASSIMILATOR I

I + - +

I ore -
I Episodes? I no I
+---------------+

Iyes
I ------------------------ +--------------------

Consider the next I I Apply bottom-up I
[episode in the [explanation

I EP-LIST to explain [I rules.
the new concept. I I I

I ------------------------ ---------------------
I ~II
no ---------------

--------- Is concept I
I explained? I

I yes
+------------------------

I Further activate I
I the explaining I
I episode by moving I
I it up in EP-LIST. I

V
EXIT <-----------------

Figure 4-2: EVENT ASSIMILATOR: The top-down algorithm

for event assimilation.

are expectations associated with the meal MOP. They perhaps are

eating because they are hungry. There are expectations

associated with their friendship and the socializing META-MOP.

They are probably excited to see each other again.

Each episode node in the story representation has an agenda

associated with it. An agenda is an ordered list of agenda

levels, each consisting of a list of agenda requests. An agenda

48

request is a test-action pair which embodies an expectation

[12J. The agenda control structure will repeatedly try all of

the requests at a given level until none of them "fire" (i.e.

none of their tests are true). Then the agenda processor will

move on to the next level, repeating the process. An episode's

agenda has been fully considered when there are no more levels

left to examine.

Expectations are added to an episode's agenda whenever a new

knowledge structure is activated by the episode. A new episode

is always created by the excitation of at least one knowledge

structure. Its initial expectations come from this initiating

knowledge structure.

Most expectations associated with the various knowledge

structures fall into five categories: 1) expectations which fill

slots, 2) expectations which are activated when their associated

knowledge structures are referenced, 3) goal/planning

expectations, 4) scenario-related expectations, and 5) event

expectations.

The most straightforward agenda requests are for

slot-fillers. For instance, the divorce MOP expects to find a

husband and a wife. The lawyer MOP expects to find a lawyer and

a client. These requests are activated by explicitly stated role

bindings (such as "Paul's wife Sarah").

MOPs and META-MOPs are interconnected in semantic memory via

MOP-links. Associated with each MOP-link is an activation

A .

47

/\
I EVENT ASSIMILATOR

\ _ _ _ _ /

-------------- >1
--------------- +

I More I ---
I Episodes? I no I
4--------------- I

Iyes I
---------------------- -------------------

I Consider the next I I Apply bottom-up I
I episode in the I explanation I
I EP-LIST to explain I I rules. [
I the new concept. I I I

I ------------------------ ---------------------..
II

no ---------------

--------- I Is concept I
explained? I

I yes

Further activate I
I the explaining I
episode by moving I

I it up in EP-LIST. I
+------------------------

II
V
EXIT < -----------------

Figure 4-2: EVENT ASSIMILATOR: The top-down algorithm
for event assimilation.

are expectations associated with the meal MOP. They perhaps are

eating because they are hungry. There are expectations

associated with their friendship and the socializing META-MOP.

They are probably excited to see each other again.

Each episode node in the story representation has an agenda

associated with it. An agenda is an ordered list of agenda

levels, each consisting of a list of agenda requests. An agenda

Ai
- . -.- - • -

49

condition. This condition dictates the circumstances under which

connected MOPs are relevant to the episode at hand. For example,

the activation condition for bringing MM-LEGAL-DISPUTE into a

divorce episode is the existence of goal conflict between the

husband and the wife. When M-DIVORCE was used to create the

divorce episode, an expectation was created to check for this

goal conflict. Later in the second paragraph, the story

describes the goal conflict, so the expectation fires and

MM-LEGAL-DISPUTE is brought into the episode.

Goal/planning expectations monitor the existence and status

of goals involved in a knowledge structure. For example, the

divorce MOP has expectations about the desire of the participants

to retain the family possessions, since this is usually a very

important aspect of divorces.

Some MOPs are partitioned into scenes. For instance,

M-LETTER is broken down into a sending scene and an arrival

scene. This information is used in the creation of the scenario

map to find the transition from one scene to the next. Also,

there are default locations associated with certain MOPs. A

letter arrival, for example, usually takes place either at the

home or the business of the person receiving the letter.

Event expectations look for the occurrence of an event that

temporally follows the last instantiated event in the MOP. This

process is driven by a pattern matcher and is very similar to

script application [1].

50

The explanation algorithm simply uses the agenda control

structure to run the agenda associated with an episode.

Expectations are tied to an episode via its agenda. Thus, the

process knowledge in BORIS is distributed throughout Episodic

memory. As new episodes are created, new agendas are also

created and associated with them. Thus, agendas in BORIS grow

dynamically. As episodic memory is searched, the relevant

process knowledge is applied. The top-down mechanism of EA

involves trying the agenda requests associated with the episodes

being searched. Therefore, the process of understanding and the

process of memory search are closely related.

4.3 Meta-Story Knowledge Monitor

BORIS is able to take advantage of knowledge pertaining to

how people organize stories. This currently manifests itself in

two ways: via main character identification and via the

establishment of local contexts.

4.3.1 Main Character Identification

A paragraph in a story often reflects the perspective of one

of its characters, revolving around his goals and actions. BORIS

attempts to identify the main character in each paragraph to

drive expectations based on his relationships with the other

characters in the story.

The main character in a paragraph is usually identified by

the parser, according to several heuristics: For instance, the

main character might be specified in the dominating concept

generated to represent the first sentence of a paragraph. Or the

51

perspective of relationships described in the story could reveal

the identify of the main character. The phrase "Paul's wife

Sarah" is evidence that Paul is the main character in the second

paragraph.

The main character often initiates episodes in a paragraph.

For example, because Richard initiates the driving episode and

the meeting/restaurant episode in the fourth paragrpah, BORIS

understands Richard as being the main character in that

paragraph.

The identity of the main character is used to organize

interpersonal thematic expectations. An agenda is associated

with each of the relationships and interpersonal themes between

the different characters in the story. We might, for example,

expect two friends to get together periodically.

When the main character of a paragraph is identified, his

relationships with the other characters in the story are brought

to the forefront. Subsequently, the agendas for these

relationships are considered during EA until the remainder of the

paragraph has been read. Thus events are understood in terms of

the thematic concerns of the main character in each paragraph.

4.3.2 Local Contexts

In the course of a story, the writer usually provides the

reader with commentary or setting information. He may reveal the

thoughts of one of the characters or give background information

pertinent to the relationship between two of the characters.

52

In the second paragraph of the divorce story, the writer

describes the contents of the letter written from Paul to his

friend Richard, which is another embedded story. The

understander must realize that everything described in the second

paragraph must be grouped together as the mental object of the

Letter Episode initiated in the first paragraph. There would be

an analogous problem in a phone conversation, an intercom

message, etc..

BORIS is able to deal with this situation by entering a

local-context mode. In this mode, all the episodes that are

created are bunched together as a large mental object unit. The

system can then refer to this unit as a whole. In the letter

episode this unit fills the object-slot of the MTRANS concept.

BORIS enters local-context mode when the first sentence of the

following paragraph refers to a mental object unit. So in this

example, the potential for a local-context mode is created when

the Letter MOP is activated in the first paragraph.

The importance of recognizing local contexts appears when

BORIS infers that Richard is a lawyer. If we examine the story

carefully, we can see that this is never explicitly stated.

Rather, it reads:

He was hoping for a favor from the only lawyer he knew.

The rule BORIS uses to make this inference is the following:

IF person Pl MTRANSes to person P2
that P1 has a goal requiring an AGENT
AND the AGENT is never mentioned,

THEN P2 is the likely AGENT.

mw

53

In order to apply this rule, BORIS must be aware that the request

for a favor is being implicitly MTRANSed to Richard, since

Richard is in the local context of reading Paul's letter. It is

the local context which supplies this awareness.

54

5. QUESTION ANSWERING

Many heuristics useful to QIA have been described elsewhere

[8]. Given this background, we will cover only those aspects of

Q/A which are unique to the BORIS system.

5.1 Understanding at Q/A Time Versus EA Time

BORIS uses the same parser to process both the sentences in

the story and any questions about the story. Since the parsing

is integrated with the memory, in most cases Q/A processing

proceeds in a similar manner. However, there are three

situations in which the "mode" (Q/A vs EA) of understanding

effects the parser's actions.

5.1.1 Tokenization

Whenever the parser encounters a reference to an object

primitive, a setting or a character, memory is searched to find

out if the object already exists in episodic memory. In EA mode,

the failure to find a referent results in the creation of a new

token in memory. However, during Q/A, a failure to find a

referent results in abandoning any attempt to find an answer.

Instead, a 'complaint' is generated to point out that a referent

could not be found. For example,

Q: What does George do for a living?
A! I don't recall any mention of a character

named George in the story.

5.1.2 Presupposition Checking

During Q/A the parser checks the role bindings presumed by

the question against the actual bindings maintained in episodic

memory. During EA, if the bindings fail to match, it indicates

55

that a new instantiation must be built. For example, the mention

of a letter from Sarah would cause BORIS to create a new M-LETTER

instance, separate from Paul's letter. During Q/A, however, a

failure of roles to match indicates a false presupposition so

BORIS rejects the question and corrects the false presupposition.

For instance:

Q: Why did Sarah write to Richard?
A: It was Paul, not Sarah, who wrote to Ri.chard.

5.1.3 Question Words.

The parser handles words like "who", "what", 'why"

"where", etc. in special ways. If such a word is encountered

during Q/A , it is assumed to be initiating a request for

information. During EA however, special demons process these

words to indicate the beginnings of clauses. If a question is

encountered while the story is being processed, then it is

treated as a rhetorical question, and no attempt is made to

answer it.

5.2 Using Memory To Understand

For BORIS, understanding a question means finding a referent

to the question concept in episodic memory. One consequence of

this view is that episodic memory is examined not only while the

question is being answered, but also while it's being understood.

Unlike many data base retrieval systems, which have an isolated

parser as a front-end, BORIS examines story-memory to aid in the

understanding process itself. For example, when people are

asked:

Q: Why didn't Richard pay Paul back?

56

they never even consider that "pay back" might refer to anything

other than the return of loaned money because they are thinking

of the story while they are parsing that question. If, however,

the story had read:

Richard had an affair with Paul's wife and Paul found
out. Paul vowed that he would kill Richard for having
ruined his marriage. Paul went after Richard with a
shotgun, but the police put Paul in jail because they
thought he was having a nervous breakdown. As the police
carried him away, Paul vowed that he would punish Richard
even if it was the last thing he did.

Then when people are asked:

Q: Why didn't Richard pay Paul back?

they won't even consider that "pay back" might mean return of

money. They immediately understand it in terms of revenge.

"Pay back" can not be disambiguated by syntactic or semantic

(i.e. general world) knowledge. What, then, is a reasonable

representation for "pay back"? Obviously, one must know what

happened in the story. Thus, the result of parsing "pay back" in

this episodic context leads to a representation which refers to

an event in episodic memory. By the time the question is

understood, then, episodic memory has already been searched.

This leads to more rapid recall of an appropriate answer. As a

result, sometimes the answer to a question will be known by BORIS

before the question has been completely parsed.

Episodic search is especially useful when the questions are

"vague". For example, "Did Paul contact Richard from San

Francisco?" is less specific than "Did Paul write to Richard

from San Francisco?" In such cases, episodes involving META-MOPs

57

are searched. When asked:

Q: Had Paul helped Richard?

BORIS searches for a META-MOP in episodic memory which involves

agency. Once NM-FAVOR has been found as a likely referent, the

specific event associated with this abstract event can be

accessed:

A: Yes. Paul had lent Richard money.

5.3 Reconstructive Search

BORIS instantiates only fragments of MOPs. This is because

search processes at retrieval-time are able to reconstruct events

from a given MOP. When BORIS is asked:

Q: Did Paul write to Richard?

it searches M-LETTER in episodic memory. Since the writing of a

letter was never mentioned, there is no instantiation for such an

event in episodic memory. However, this event can be inferred.

BORIS knows that Richard could not have received a letter from

Paul unless Paul had written a letter. At this point in the

search, the event of Paul's writing a letter is retrieved and

instantiated. The next time this question is asked, the

instantiation will be found (not inferred). This means that

asking the same question again will result in answering it more

quickly the second time. Thus BORIS's episodic memory may be

altered during the question-answering process. This allows for

an increase in the efficiency of recall, since BORIS only

instantiates what is used for retrieval.

58

6. GENERATION OF ENGLISH IN BORIS

The BORIS generator is based upon the system GEN, written by

Rod McGuire at Yale [11]. A few changes to GEN were necessary

to make it work well in the BORIS system. For instance, GEN

assumed that its input would be a precise conceptual

representation. In BORIS this is rarely true -- the memory

structures contain much more information than it is desirable or

feasible to express. In fact all of BORIS memory is linked, and

"complete" generation of one concept would require that all of

memory be expressed. Furthermore, the BORIS memory structures

have been developed specifically to facilitate the internal

processes of understanding, with generation being a secondary

consideration. Therefore these structures are in many ways

unsuited to direct generation.

6.1 The Basics of Generation

Generation is accomplished by processing elements of a

"phrase-stream" [11], or list of sentence units to be expressed.

The generator loops, dealing with these elements until the

phrase-stream is empty. Phrase-stream elements contain generator

instructions and provide access to other instructions (stored as

data) which eventually access words. How these elements are

derived and used is explained later, but it is important to

recognize that they must access memory. One of the most

significant features of the BORIS generator is the way this

lexical memory is organized. The organization is based upon a

hierarchy of lexical prototypes developed in McGuire's GEN, and

adapted and expanded for use in BORIS.

r "-

59

6.1.1 The Prototype Hierarchy

The prototype hierarchy is a system for classifying

generation information according to a hierarchy of lexical

"prototypes" which the generator uses for information on how to

express a concept. The hierarchy is tree-like in that the

higher-level elements may have each many subordinate elements.

Raw concepts are treated as the terminal nodes of the tree.

In BORIS, generation information is not stored in individual

conceptual instantiations (as in GEN). Rather, it is associated

with instantiation "templates" in the prototype hierarchy. Since

the generator needs lexical information to be able to express a

concept, it has to access this information by examining the

hierarchy. Templates frequently have part of the information

necessary for generation, but usually the generator must look for

at least some of the information higher up in the tree.

The prototype hierarchy is intended to consolidate

information about similar expressive forms into a single memory

unit. When a representation (such as CD) has a characteristic

that can be treated as equivalent for generation, the database

used by the generator should only store that information in one

place. Thus, the more common information is stored in the trunk

of the tree and the more specific in the branches.

Most concepts have a lexical prototype and the process of

tracing up the various levels of the hierarchy ultimately leads

to the lexical entity G-S (for "goal/state" in GEN). G-S is an

"1orphan", in that it has no prototype (parent) node.

60

Stored in this set of prototypes is information about how

concepts should be expressed. This might be as simple as a

particular word to use, or verb information referring to a table

of forms for that particular verb. More complex data is also

used, such as the order in which to express concepts, paths to

follow to check whether a concept should be expressed, and

alternatives to use when some paths may fail.

The generator searches the prototype hierarchy in the

following manner: In order to find an item of generation

information, it checks to see whether the raw concept (the input

concept) contains this information. If the information is there,

no more searching need be done. Otherwise, the lexical prototype

is looked up. If there is no lexical prototype then it is

assumed that the current item is to be expressed as is. If there

is a lexical prototype but it doesn't contain the proper

information, the next prototype is checked (the prototype of the

prototype), and so forth.

6.1.2 The Process of Generation

The fundamental dynamic element of the generator is the

"phrase-stream" [111, which organizes the expression of the

various parts of the current concept and keeps track of exactly

when to perform various actions. These actions are pointers to

LISP code which ultimately produce "lexical items" or words.

The generator proceeds by expanding the expression on the

left of the phrase stream and replacing it by its expansion.

This expansion usually involves a search of the prototype

61

hierarchy. When a phrase-stream element cannot be expanded, it

is considered to be a word, removed from the phrase-stream and

placed in temporary storage. The cycle is then repeated on the

new phrase stream. Generation ends when all expansions are

completed and the phrase stream is empty. The remaining task of

the generavor is to print the words.

The structure of the phrase-stream results in a mode of

generation similar to left-to-right, depth-first traversal of a

syntactic tree. However syntactic constructs are determined

solely on the basis of conceptual content and the choice of words

and phrases is controlled by the conversational context as well

as by a conceptual "dictionary."

It is the prototype hierarchy which controls the actual

sequence of subject, verb, phrasal-object and other parts of a

sentence. At first the phrase-stream contains only a single

element, placed there at the beginning of a generator run, which

expands to the correct sequence of expressions according to the

concept being generated. The original element of the

phrase-stream functions to search the prototype tree for the

contextually, conceptually and lexically appropriate method of

expression. This element is expanded into several elements which

organize the expression. At each stage of expansion, contextual

and semantic factors can be taken into account.

The prototype hierarchy can be seen as a discrimination net

for the expression of different concepts. All expression is

controlled by the lexical-prototype system with the phrase-stream

62

being completely subordinate to this data-base. The initial

element of the phrase-stream is a pointer to a section of LISP

code which finds a phrase structure for the concept being

generated. This is done by finding the most specific lexical

prototype which contains information about phrase structure (i.e.

searching the prototype tree until such a prototype is found.)

Many concepts require a similar phrase structure. For these

concepts the proper information is stored in a common lexical

prototype. For cases where special requirements are made of the

generator, the unique code is stored low in the prototype tree.

An example of the use of the phrase-stream and the prototype

hierarchy to generate English from a BORIS "PTRANS" concept

appears in figure 6-1. In this figure, EV-POSTAL refers to the

event of a letter being brought by a mailman. This is represented

in Conceptual Dependency as:

(PTRANS ACTOR mailman
OBJECT letter
FROM mailman
TO reader)

EV-POSTALO is a BORIS memory node constructed to represent

the event of the arrival of Paul's letter in paragraph one of the

divorce story. When the BORIS generator expresses EV-POSTALO, it

finds no generation information in the instantiated node, so it

traverses the prototype link to the template, EV-POSTAL, a node

in the letter MOP. The template node contains two items of

information: 1) use the verb "to get", and 2) subject of the

sentence will be found in the TO slot of the conceptual

63

prototype nodes:

top level node: G-S* I \

DO STATE AFFECT
* /I \.

PTRANS lexical node: PTRANS INGEST

BORIS PTRANS template: EV-POSTAL

instantiation: EV-POSTALO

Figure 6-1: Sample Hierarchical Structure and Traversal

To Seek Generation Information

representation. The lexical prototype of EV-POSTAL is PTRANS,

which has certain PTRANS-specific information about

phrasal-object expression. PTRANS then has a prototype link

ultimately to G-S, which contains some information which is

overridden by information in more specific nodes. G-S also

organizes the sentence structure in a fairly standard way. Using

the role bindings in the instantiation, the concept is ultimately

expressed as: "RICHARD GOT A LETTER FROM PAUL."

6.1.3 The Role of a Generator

The role of a generator is to be a means to expression. All

aspects of expression, from finding the words for a concept, to

organizing several concepts coherently, should be the

responsibility of generator-type functions. GEN takes care of

basic expression: In BORIS, the task of expression is more

complex, and is partly dealt with in the way the Q/A mechanism

organizes conceptual answers to questions.

64

6.2 Generation Research In Progress

Generation is often viewed as the last step after

understanding and response formation. It is important to

recognize, however, that every text we parse has been generated.

This view of generation helps emphasize the true role of

generation; we generate in order to be understood. Below are some

of the directions being taken

1. INTEGRATED GENERATION: People answering questions
often begin to express their answers before they have
n been fully determined. In BORIS, what remains
difficult is the generation of appropriate transition
expressions to make the fragmentary output appear
"smooth". This argues for a merging of generation
tasks with understanding understanding tasks.

2. SUMMARIZATION: In a broad-based natural language
system, we find tasks which involve similar processing
at various levels. In programming terms,
story-parsing and question-parsing in BORIS are done
by the same function, operating in slightly different
modes. It is reasonable to assume that people have
one language understanding mechanism which they apply
to all their language understanding tasks. Likewise,
it is reasonable to assume that expressive tasks will
be based upon a single generator function. In BORIS
there are two generation tasks. The prime application
is in Q/A but it has also been used in summarizing and
paraphrasing. The summarization process is based upon
Wendy Lehnert's plot unit system [9] which organizes
memory according to certain states (positive acts,
negative acts and mental states). Plot units are
specific combinations of these states which are
distinct and important enough that they can be treated
as individual units. Once a program has built memory
based upon plot units, they can be analyzed to produce
a summary of the story.

3. GENERATION FROM TAUS: Currently, generation makes use
of MOPs and CD primitives. TAUs are used in
generating responses to questions involving affects.
TAUs also have expression information directly
associated with them. Future work will allow BORIS to
generate adages from TAUs. For example, in answer to
the question: "What is a moral of the story?" a
response from TAU-HIDDEN-BLESSING would be: "Every
cloud has a silver lining."

65

4. DIALOG PRIMITIVES: Research is also underway to
expand the existing set of "dialog primitives" used in
BORIS. Dialog primitives capture the speakers overall
intentions in generating his response (in addition to
its specific content). For example, the predicate
DISAGREE represents the speaker's motivations for
expressing disagreement, as in arguments of fact or
interpretation. Such primitives have generational
frames associated with them. For instance, the
following frame:

"BUT IT WAS (person) WHO (role),
NOT (other person) ... "

is associated with the dialog primitive, DISAGREE.

*1

66

7. FUTURE RESEARCH AND CONCLUSIONS

7.1 Future Work

There are numerous directions for BORIS to go in. Much work

remains to be done in representing the kinds of knowledge needed

to understand stories like the divorce story, and to increase the

interaction between knowledge sources. For example, the

distinction between the event assimilator and the parser is

somewhat artificial. Therefore, a new version of BORIS is being

designed which does away with this distinction -- leaving a

system that is completely integrated.

Other research directions include: improving the program's

use of memory overlays and multiple perspectives, expanding the

roles of TAUs, and exploring the effects of episodic memory upon

processing.

The next immediate step in our research methodology involves

testing the BORIS system on variations of the divorce story, in

order to improve the robustness of the system and to see what

kinds of modifications are necessary to both the representational

structures and process mechanisms.

One good sign has been that each successive paragraph in the

divorce story has taken less time and effort to implement.

7.2 Conclusions

It is difficult to appreciate the complexity involved in

natural language processing because people do it so effortlessly.

Anyone can read a newspaper or engage in a conversation. Yet the

67

goal of producing commercial natural language systems remains

unattained.

People are the most impressive examples of intelligent

processors which employ many divergent sources of knowledge

operating at varying levels of detail and interaction.

Currently, the only areas which directly exercise and reveal such

uniquely human skills are to be found in natural-language-based

tasks: i.e. conversation, question answering, translation,

argumentation, and story understanding. As such, BORIS's most

important contribution is as both a source and testbed for

theoretically interesting problems concerning such basic

cognitive skills.

68

8. APPENDIX

BORIS runs on a DEC-20 at Yale and is implemented in TLISP

(Yale UCI Rutgers LISP). What follows are fragments of BORIS

execution traces. These traces have been superficially edited in

order to shorten their length and improve readability. The Q/A

trace shows the parsing process in the most detail.

8.1 Trace of BORIS on First Paragraph

ACTIVE MODULE: CONCEPTUAL-ANALYSIS
(PGH) RICHARD
CONO = HUMAN NAME (RICHARD) GENDER (MALE))

HADN'T HEARD FROM
CON5 - (MTRANS ACTOR (NIL) TO RICHARDO TIME (PAST) MODE (NEG))

HIS COLLEGE ROOMMATE PAUL FOR YEARS (PRD)
CONI3 - (HUMAN REL (R-ROOMMATES ROOMMATE-A PAULO

ROOMMATE-B RICHARDO ERA (COLLEGE))
GENDER (MALE) NAME (PAUL))

ACTIVE MODULE: IP-RELATION-CREATION
NEW INTERPERSONAL RELATION - R-ROOMMATES0

== INFERRING THEME FROM RELATION --
== NEW INTERPERSONAL THEME -= IPT-FRIENDSHIPO

ACTIVE MODULE: CONCEPTUAL-ANALYSIS
RICHARD
CON24 - (HUMAN NAME (RICHARD) GENDER (MALE))

HAD BORROWED
CON27 - (M-BORROW MB-LENDER (NIL) MB-BOBJECT (NIL)

MB-BORROWER RICHARDO EVENT (EV-LEND-OBJ))

MONEY
CON32 - (MONEY)

ACTIVE MODULE: EPISODE-CREATION
NEW EPISODE - EPO

-- CREATING PERSPECTIVE ON EPO-- M-BORROW
ACTIVE MODULE: EVENT-ASSIMILATION

CONSIDERING EPISODE EPO --
EXPLANATION -- Event explained in EPO

Perspective: EV-LEND-OBJ in M-BORROW

ACTIVE MODULE: CONCEPTUAL-ANALYSIS

69

FROM PAUL
C0N27 - (M-BORROW MB-LENDER PAULO MB-BOBJECT TOKI

MB-BORROWER RICHARDO EVENT (EV-LEND-OBJ))

WHICH WAS NEVER PAID BACK (CMA)
CON40 - (ATRANS ACTOR RICHARDO OBJECT TOKI TO PAULO MODE (NEG))

ACTIVE MODULE: EVENT-ASSIMILATION
-- CONSIDERING EPISODE EPO --
-- CREATING PERSPECTIVE ON EPO-- MM-FAVOR
-- EXPLANATION -- Event explained in EPO

Perspective: EV-RETURN-OBJ in M-BORROW

ACTIVE MODULE: CONCEPTUAL-ANALYSIS
BUT NOW HE
CON45 - (HUMAN GENDER (MALE) CONTYPE (PRON)

CASE-FRAME (NOMINATIVE))

HAD NO IDEA
CON49 - (BEG)

CON50 - (PLAN-BOX-SUCCESS)

WHERE TO FIND HIS OLD FRIEND (PRD)
CON52 - (D-KNOW ACTOR RICHARDO OBJECT TOK2

STATUS (PLAN-BOX-SUCCESS MODE (NEG)
ACTOR RICHARDO TIME (NOW)))

WHEN
CON64 - (TIME-OF CON (NIL))

A LETTER
CON67 - (PHYSOBJ TYPE (LETTER))

ACTIVE MODULE: TOKEN-MOP-SETTING
-- NEW EPISODE -- EPI
-- CREATING PERSPECTIVE ON EPli- M-LETTER

ACTIVE MODULE: CONCEPTUAL-ANALYSIS
FINALLY ARRIVED FROM SAN FRANCISCO (CMA)
CON64 - (TIME-OF CON (PTRANS OBJECT LETTERO FROM SAN-FRANCISCOO))

ACTIVE MODULE: EVENT-ASSIMILATION
" CONSIDERING EPISODE EPI --
"" EXPLANATION -- Event explained ir EPi

Perspective: EV-POSTAL in M-LETiER
CREATING PERSPECTIVE ON EPl =- MM-COM

ACTIVE MODULE: CONCEPTUAL-ANALYSIS
RICHARD
C0N73 - (HUMAN NAME (RICHARD) GENDER (MALE))

WAS ANXIOUS TO FIND OUT HOW PAUL WAS

CON76 = (GOAL ACTOR RICHARDO DESIRE (STRONG)

70

GOBJ (D-KNOW
ACTOR RICHARDO OBJECT (STATE ACTOR PAULO))
TIME (TIME-OF CON (PTRANS

OBJECT LETTERO
FROM SAN-FRANCISCOO)))

ACTIVE MODULE: EVENT-ASSIMILATION
== CONSIDERING EPISODE EPi ==
== EXPLANATION - Goal explained in EPl

Perspective: G-KEEP-IN-TOUCH in MM-COM

QA-SESSION:

8.2 Trace of Q/A

Had Paul helped Richard?

Processing word: HAD
Using word: DID

Adding to *wm*: CON297
Spawning: DEM108 = (CONNECT-VERIFY CON297 (ACT GOAL MOP) AFT)

CON297 = (MODE IS IS10)

Processing word: PAUL
Adding to *wm*: CON298
Spawning: DEM109 = (HUMAN-BIND CON298 INSTAN21

PAUL FIRST-NAME)
CON298 = (HUMAN NAME NAME10

GENDER GENDERLO
INSTAN INSTAN21)

Executing: DEM109
INSTAN21 <- (PAULO)

Killing: DEM109

Processing word: HELPED
Using root: HELP with suffix: ED
Adding to *wm*: CON299
Spawning: DEM110 - (FRIENDS-MAY-FAVOR CON299)
Spawning: DEM111 - (EXP CON299 AGENTO HUMAN BEF)
Spawning: DEM112 - (EXP CON299 ACTOR7 HUMAN AFT)

CON299 - (AGENCY AGENT AGENTO
ACTOR ACTOR7
GOAL GOALO)

Executing: DEMll
AGENTO <-- CON298

Killing: DEMII
Executing: DEM108

CON299 <- (AGENCY AGENT AGENTO ACTOR ACTOR7 GOAL GOALO
MODE (VERIFY))

Spawning: DEMll3 - (ANS-VERIFY-QUES CON299)
Killing: DEM108

71

Processing word: RICHARD
Adding to *wm*: CON300
Spawning: DEM14 = (HUMAN-BIND CON300 INSTAN22

RICHARD FIRST-NAME)

CON300 - (HUMAN NAME NAME11
GENDER GENDER11
INSTAN INSTAN22)

Executing: DEM114
INSTAN22 <-- (RICHARDO)

Killing: DEM114
Executing: DEM112

ACTOR7 <-- CON300
Killing: DEM112
Executing: DEMllO

SEARCH INTERPERSONAL THEME BETWEEN RICHARDO AND PAULO
::: (IPT-FRIENDSHIPO) FOUND

SEARCH EPISODIC MEMORY FOR INSTANTIATION OF MM-FAVOR
:::> (EPO) FOUND

REINTERPRET AGENCY AS MM-FAVOR

Spawning: DEM115 = (FIND-EP CON299 INSTAN230)
CON299 = (MM-FAVOR FAV-RECEIVER ACTOR7

FAV-GIVER AGENTO
MODE MODEO
INSTAN INSTAN230)

Killing: DEMI0
Exectting: DEMI5

SEARCH FOR AN INSTANTIATION OF MM-FAVOR
:::>> (EPO) FOUND

INSTAN230 <- (EPO)

Spawning: DEM116 - (PRES-CHECK CON299 AGENTO FAV-GIVER EPO)
Spawning: DEM117 - (PRES-CHECK CON299 ACTOR7

FAV-RECEIVER EPO)
Killing: DEM115
Executing: DEM117
Killing: DEM117
Executing: DEMI6
Killing: DEM116

Processing word: *QMARK*
Adding to *wm*: CON301

CON301 - (*END*)
Executing: DEMI3

SEARCH MAIN EVENT OF META-MOP MM-FAVOR AS ELABORATION
: EV-LEND-OBJ0 FOUND

Killing: DEM113

72

Result of parse:

(MM-FAVOR FAV-RECEIVER (HUMAN NAME (RICHARD)

GENDER (MALE)
INSTAN (RICHARDO))

FAV-GIVER (HUMAN NAME (PAUL)
GENDER (MALE)
INSTAN (PAULO))

MODE (VERIFY)
INSTAN (EPO))

Answer is (VERIFICATION IS (POS)
SEARCH (EPISODIC)
ELAB (EV-LEND-OBJO))

8.3 Trace of Generation

This trace generates English output for the question

processed in section 8.2:

ID following (PHL)
IS of: (D-PERHAPS) following path: (IS)

YES ...
CM& ... IS of: (D-PERRAPS (D-PH)) following path: (ELAB)

ID following (PHL)
ID following (SUBJECT)
IS of: (D-SUBJ) following path: (*SUBJ)
ID following (FIRST-NAME)

PAUL ... ID following (MODE LEX)
ID following (LEX VERB)

LENT ... IS of: (D-PH) following path: (OBJECT)
ID following (LEX)

MONEY ...
TO ... IS of: (D-PH) following path: (TO)

ID following (FIRST-NAME)

RICHARD
PRD ...

YES, PAUL LENT MONEY TO RICHARD.

73

REFERENCES

[1] Cullingford, R. E.
Script Application: Computer Understanding of Newspaper

Stories.
Technical Report 116, Yale University. Department of

Computer Science, 1978.

[2] Dejong II, Gerald F.
Skimming Stories in Real Time: An Experiment in Integrated

Understanding.
Technical Report 158, Yale University. Department of

Computer Science, 1979.

[3) Dyer, Michael G. and Lehnert, Wendy G.
Organization and Search Processes for Narratives.
Technical Report 175, Yale University. Department of

Computer Science, 1980.

[4] Richard H. Granger, Jr.
Adaptive Understanding: Correcting Erroneous Inferences.
Technical Report 171, Yale University. Department of

Computer Science, 1980.

[51 Kolodner, Janet L.
Retrieval and Organizational Strategies in Conceptual

Memory: A Computer Model.
Technical Report 187, Yale University. Department of

Computer Science, 1980.

[6] Michael Lebowitz.
Generalization and Memory in an Integrated Understanding

System.
Technical Report 186, Yale University. Department of

Computer Science , 1980.

[7] Lehnert, Wendy G. and Burstein, Mark H.
The Role of Object Primitives in Natural Language

Processing.
Technical Report 162, Yale University. Department of

Computer Science, 1979.

[81 Lehnert, Wendy G.
The Process of Ouestion Answering.
Lawrence Erlbaum, Hillsdale, New Jersy, 1978.

[91 Lehnert, W. G.
Affect Units and Narrative Summarization.
Technical Report 179, Yale University. Department of

Computer Science , 1980.

74

[10] Schank, Roger C.
Reminding and Memory Organization: An Introduction to

MOPs.
Technical Report 170, Yale University. Department of

Computer Science, 1979.

[il McGuire, R.
Political Primaries and Words of Pain.
Unpublished Manuscript, Dept. of Computer Science, Yale

Univeristy, New Haven, CT.
1980.

[121 Christopher K. Riesbeck and Roger C. Schank.
Comurehension by.Computer: Expectation-Based Analsis of

Sentences in Context.
Technical Report 78, Yale University. Department of

Computer Science , 1976.

[131 Schank, Roger and Abelson, Robert.
Scripts, Plan. , Goal@, and Understanding.
Lawrence Earlbaum Associates, Hillsdale, New Jersey, 1977.
The Artificial Intelligence Series.

[141 Schank, R. C. and Jaime G. Carbonell, Jr.
Re: The Gettvsburg Address. Representing Social and

Political Acts.
Technical Report 127, Yale University. Department of

Computer Science, 1978.

(151 Schank, Roger C.
Conceptual Information Processing.
North Holland / American Elsevier, 1975.
Fundamental Studies in Computer Science, Volume 3.

[161 Wilensky, Robert.
Understanding Goal-Based Stories.
Technical Report 140, Yale University. Department of

Computer Science , 1978.

Li

